

FOR THE BEST PROFESSIONALS

# **Alternative Fuels**

#### Denis Lagarde Teacher at STC T&C Rotterdam



#### What alternative fuels?

LNG ? Or is there more?

### Alternative fuels

- LNG
- Hydrogen
- Methanol
- Ammonia



# LNG

- More and more commonly used
- Meets Tier III
- Seen as a transition fuel
- Cryogenic storage
- Flammable
- Available in more harbours and bunker facillities



# Hydrogen

- Meets Tier III
- Very clean fuel
- Storage at 700 bar gas or
- Storage at -253 degrees liquid
- Availability problem
- Low energy density per unit of volume
- In future mainly practical for small ships that have frequent access to bunkering stations
- Potential long term solution



# Methanol

- Already in use (Stena Germanica)
- Meets Tier III
- Mixed with diesel (95%-5%)
- No cryogenic storage
- Needs 60% more bunker volume due to lower energy density
- Flammable (11 degrees) and Toxic
- Good alternative for the future



## Ammonia

- Available
- Meet Tier III
- Very clean zero carbon
- Flammable and toxic
- Cryogenic storage 33 degrees
- Needs research and development
- Good alternative for the future





#### Why alternative fuels ?

#### Marpol Annex VI regulation 13 en 14



The Environmental Protection Agency (EPA) is an independent executive agency of the United States federal government tasked with environmental protection

matters.

Note: Because NOx emission standards differ depending on engine speed, the minimum-to-maximum range is shown





#### **Installation onboard**

#### Example LNG as fuel







#### Interface Ship/Shore or Ship /Ship

During bunkering operations / Hazards during bunkering

# Flammable

- Low-flashpoint fuels
- Static electricity
- Ignition sources
- Zone I around bunker station





# Cryogenic hazards

- Extreme low temperatures
- LNG -162 degrees
- Hydrogen 253 degrees centigrade
- All hoses flanges and piping Are frozen





## Cryogenic burns







0.00



### Poisonous/Toxic

- Depending on the type of fuel
- Mainly Ammonia and Methanol
- Breathing protection in bunkering zone
- See also SDS





# Suffocating

- During spill in gas cloud LNG
- Lack of oxygen







#### Regulations

#### To prevent accidents, spills and casualties

### **IGF Code**

- International code of safety for ships using gases or other low-flashpoint fuels
- This Code gives the regulations for the design and equipment of ships using gases or other low flash point fuels



# **IGF CODE**

INTERNATIONAL CODE OF SAFETY FOR SHIPS USING GASES OR OTHER LOW-FLASHPOINT FUELS

2016 EDITION





- LNG bunker checklist
- To be checked and signed by both parties
- Bunker ship /Truck and receiving ship.
- The bunker procedure mandatory on board each ship shall be observed.





#### LNG Bunker Checklist Ship to Ship

#### PART A: Planning Stage Checklist

This part of the checklist should be completed in the planning stage of an LNG bunker operation. It is a recommended guideline for the, in advance, exchange of information necessary for the preparation of the actual operation.

| Planned date and time: |  |
|------------------------|--|
| Port and Berth:        |  |
| LNG receiving ship:    |  |
| LNG bunker vessel:     |  |

|   | Check                                                                                                               | Ship | Bunker<br>Vessel | Terminal | Code | Remarks |
|---|---------------------------------------------------------------------------------------------------------------------|------|------------------|----------|------|---------|
| 1 | Competent authorities have granted permission<br>for LNG transfer operations for the specific<br>location and time. |      |                  |          | Ρ    |         |
| 2 | The terminal has granted permission for LNG<br>transfer operations for the specific location and                    |      |                  |          | P    |         |





#### LNG Bunker Checklist Truck to Ship

#### PART A: Planning Stage Checklist

This part of the checklist should be completed in the planning stage of an LNG bunker operation. It is a recommended guideline for the, in advance, exchange of information necessary for the preparation of the actual operation.

| Planned date and time:          |  |
|---------------------------------|--|
| Designated LNG bunker location: |  |
| LNG receiving ship:             |  |
| LNG supplying bunker truck:     |  |

|   | Check                                                                                                               | Ship | LNG<br>Truck | Terminal | Code | Remarks |
|---|---------------------------------------------------------------------------------------------------------------------|------|--------------|----------|------|---------|
| 1 | Competent authorities have granted permission<br>for LNG transfer operations for the specific<br>location and time. |      |              |          | Р    |         |
| 2 | The terminal has granted permission for LNG<br>transfer operations for the specific location and<br>time.           |      |              |          | Р    |         |



#### Local rules and regulations

#### **Local Regulations**

For safety reasons various Port Bye-Laws apply in the ports of Rotterdam, Vlaardingen, Schiedam, Dordrecht, Papendrecht and Zwijndrecht. The Port Bye-Laws specify the 'house rules' of the ports. The same rules apply for the Amsterdam port region.

Local rules and regulations shall be observed during bunkering



- Mandatory courses to be followed by crew and officers on board ships under the IGF code
- Accredited by the local Authorities
- Basic IGF training
- Advanced IGF training



| Page 45/46<br>2017 edition | Page 219-231<br>2017 edition                |                                                                             |
|----------------------------|---------------------------------------------|-----------------------------------------------------------------------------|
| Regulation V/3             |                                             |                                                                             |
| Paragraph 5                | Section A – V/3,<br>Table A – V/3 – 1       | <ul> <li>Basic Training for Ships Subject<br/>to the IGF Code</li> </ul>    |
| Paragraph 8                | Section A $-$ V/3,<br>Table A $-$ V/3 $-$ 2 | <ul> <li>Advanced Training for Ships<br/>Subject to the IGF Code</li> </ul> |



## ATEX/ Hazardous zones

- Most alternative fuels are highly volatile and or in gas form
- Each ship carrying these fuels have a zoning drawing identifying the Zones 0,1 and 2
- This either conform Atex OR the Zones mentioned in the IGF code.
- Crew members need to know how to behave in these Zones and what the hazards are in these Zones







## PPE

- Suitable PPE s should be available during bunkering
- Antistatic clothing and footwear should be present
- Clothing especially gloves should be suitable for low temperatures (LNG -162)
- Full facial masks
- Personal detection









#### Conclusion

How does the future looks like

## The nearby future

- LNG will be developed more and the most used alternative fuel in the nearby future
- Followed by Methanol and later Ammonia.
- Hydrogen is promissing, but needs more research especially on storage and bunker facilities.





End of presentation Thanks for your attention Questions ??

